Multi-Material 3D Printing and Computational Design in Pharmaceutical Tablet Manufacturing
DOI:
https://doi.org/10.54097/40ftw337Keywords:
3D printing, Multi-material printing, Computational pharmaceutical design, AI in pharmaceuticals, Advanced manufacturingAbstract
Multi-material 3D printing has revolutionized pharmaceutical tablet manufacturing by enabling unprecedented control over the spatial arrangement of active pharmaceutical ingredients (APIs) and excipients. This systematic review analyzes the significant advances in computational methods and 3D printing technologies for pharmaceutical applications from 2005 to 2024. The review explores the integration of artificial intelligence and evolutionary algorithms in solving complex inverse problems of tablet design, where computational methods achieve better accuracy in predicting drug release profiles. Recent developments in material science, including novel thermoresponsive polymers and stimuli-responsive materials, have enhanced manufacturing capabilities while maintaining drug stability. Clinical trials and real-world implementations demonstrate improvements in therapeutic outcomes, with personalized 3D printed medications showing enhanced treatment efficacy and better safety profiles compared to conventional formulations. The review also addresses critical challenges in regulatory compliance, quality control, and scale-up processes, providing a framework for future developments in personalized medicine manufacturing. This work synthesizes current knowledge and identifies emerging trends, offering insights into the future direction of pharmaceutical 3D printing technology and its implications for personalized medicine.
Downloads
References
[1] Abbasnezhad, N., Zirak, N., Shirinbayan, M., Kouidri, S., Salahinejad, E., Tcharkhtchi, A., & Bakir, F. (2021). Controlled release from polyurethane films: Drug release mechanisms. Journal of Applied Polymer Science, 138(12), 50083.
[2] Arefin, A. M. E., Khatri, N. R., Kulkarni, N., & Egan, P. F. (2021). Polymer 3D printing review: Materials, process, and design strategies for medical applications. Polymers, 13(9), 1499.
[3] Aulton, M. E., & Taylor, K. (Eds.). (2013). Aulton's pharmaceutics: the design and manufacture of medicines. Elsevier Health Sciences.
[4] Capel, A. J., Rimington, R. P., Lewis, M. P., & Christie, S. D. R. (2018). 3D printing for chemical, pharmaceutical and biological applications. Nature Reviews Chemistry, 2, 422-436.
[5] Denis, L., Jørgensen, A. K., Do, B., Vaz-Luis, I., Pistilli, B., Rieutord, A., ... & Annereau, M. (2024). Developing an innovative 3D printing platform for production of personalised medicines in a hospital for the OPERA clinical trial. International Journal of Pharmaceutics.
[6] Ding, C., & Li, Z. (2017). A review of drug release mechanisms from nanocarrier systems. Materials Science and Engineering: C, 76, 1440-1453.
[7] Han, R., Yoon, H., Kim, G., Lee, H., & Lee, Y. (2023). Revolutionizing Medicinal Chemistry: The Application of Artificial Intelligence (AI) in Early Drug Discovery. Pharmaceuticals, 16(9), 1259. https://doi.org/10.3390/ph16091259
[8] Huanbutta, K., Burapapadh, K., Sriamornsak, P., & Sangnim, T. (2023). Practical application of 3D printing for pharmaceuticals in hospitals and pharmacies. Pharmaceutics, 15(7), 1877.
[9] Higuchi, T. (1963). Mechanism of sustained‐action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. Journal of Pharmaceutical Sciences, 52(12), 1145-1149.
[10] Jamróz, W., Szafraniec, J., Kurek, M., & Jachowicz, R. (2018). 3D printing in pharmaceutical and medical applications--Recent achievements and challenges. Pharmaceutical Research, 35(9), 1-22.
[11] Karalia, D., Siamidi, A., Karalis, V., & Vlachou, M. (2021). 3D-printed oral dosage forms: Mechanical properties, computational approaches and applications. Pharmaceutics, 13(9), 1401.
[12] Katstra WE, Palazzolo RD, Rowe CW, Giritlioglu B, Teung P, Cima MJ. Oral dosage forms fabricated by three dimensional printing. J Control Release. 2000 May 3;66(1):1-9. doi: 10.1016/s0168-3659(99)00225-4. PMID: 10708873.
[13] Lin, Y.H., Zhang, W., & Chen, X. (2024). Smart Materials in Pharmaceutical 3D Printing: A New Generation of Drug Delivery Systems. Advanced Drug Delivery Reviews, 195, 114892.
[14] Melchels, F. P., Feijen, J., & Grijpma, D. W. (2010). A review on stereolithography and its applications in biomedical engineering. Biomaterials, 31(24), 6121-6130.
[15] Mirza, M. A., & Iqbal, Z. (2018). 3D printing in pharmaceuticals: Regulatory perspective. Current Pharmaceutical Design, 24(42), 5081-5083.
[16] Norman, J., Madurawe, R. D., Moore, C. M., Khan, M. A., & Khairuzzaman, A. (2017). A new chapter in pharmaceutical manufacturing: 3D-printed drug products. Advanced drug delivery reviews, 108, 39-50.
[17] Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... & Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. bmj, 372.
[18] Park, B. J., Choi, H. J., Moon, S. J., Kim, S. J., Bajracharya, R., Min, J. Y., & Han, H. K. (2019). Pharmaceutical applications of 3D printing technology: Current understanding and future perspectives. Journal of Pharmaceutical Investigation, 49, 575-585.
[19] Parulski, C., Jennotte, O., Lechanteur, A., & Evrard, B. (2021). Challenges of fused deposition modeling 3D printing in pharmaceutical applications: where are we now? Advanced drug delivery reviews, 175, 113810.
[20] Sharma, P. (2024). Quantum Computing in Drug Design: Enhancing Precision and Efficiency in Pharmaceutical Development. Sage Science Review of Applied Machine Learning, 7(1), 1-9.
[21] Seoane-Viaño, I., Trenfield, S. J., Basit, A. W., & Goyanes, A. (2021). Translating 3D printed pharmaceuticals: From hype to real-world clinical applications. Advanced Drug Delivery Reviews, 174, 553-575.
[22] Song, S. W., Hidajat, K., & Kawi, S. (2005). Functionalized SBA-15 materials as carriers for controlled drug delivery: influence of surface properties on matrix− drug interactions. Langmuir, 21(21), 9568-9575.
[23] Tabakoglu, S., Kołbuk, D., & Sajkiewicz, P. (2023). Multifluid electrospinning for multi-drug delivery systems: Pros and cons, challenges, and future directions. Biomaterials Science, 11(1), 37-61.
[24] Tan, D. K., Maniruzzaman, M., & Nokhodchi, A. (2020). Development and Optimisation of Novel Polymeric Compositions for Sustained Release Theophylline Caplets (PrintCap) via FDM 3D Printing. Polymers, 12(1), 27. https://doi.org/10.3390/polym12010027
[25] Trenfield, S. J., Awad, A., Goyanes, A., Gaisford, S., & Basit, A. W. (2018). 3D printing pharmaceuticals: drug development to frontline care. Trends in pharmacological sciences, 39(5), 440-451.
[26] Trenfield, S. J., Awad, A., Madla, C. M., Hatton, G. B., Firth, J., Goyanes, A., ... & Basit, A. W. (2019). Shaping the future: recent advances of 3D printing in drug delivery and healthcare. Expert opinion on drug delivery, 16(10), 1081-1094.
[27] Ullah, M., Wahab, A., Khan, S. U., Naeem, M., ur Rehman, K., Ali, H., ... & Alkhalidi, H. M. (2023). 3D printing technology: A new approach for the fabrication of personalized and customized pharmaceuticals. European Polymer Journal, 195, 112240.
[28] Uppalapati, K., Dandamudi, E., Ice, S. N., Chandra, G., Bischof, K., Lorson, C. L., & Singh, K. (2024). A Comprehensive Guide to Enhancing Antibiotic Discovery Using Machine Learning Derived Bio-computation. arXiv preprint arXiv:2411.06009.
[29] Visan, A. I., & Negut, I. (2024). Integrating Artificial Intelligence for Drug Discovery in the Context of Revolutionizing Drug Delivery. Life, 14(2), 233. https://doi.org/10.3390/life14020233
[30] Vora, L. K., Gholap, A. D., Jetha, K., Thakur, R. R. S., Solanki, H. K., & Chavda, V. P. (2023). Artificial intelligence in pharmaceutical technology and drug delivery design. Pharmaceutics, 15(7), 1916.
[31] Wang, S., Liu, R., Fu, Y., & Kao, W. J. (2020). Release mechanisms and applications of drug delivery systems for extended-release. Expert Opinion on Drug Delivery, 17(9), 1289–1304. https://doi.org/10.1080/17425247.2020.1788541
[32] Wang, W., Ye, Z., Gao, H., & Ouyang, D. (2021). Computational pharmaceutics - A new paradigm of drug delivery. Journal of Controlled Release, 338, 662-677.
[33] Wen, M., Zhang, Z., Niu, S., Sha, H., Yang, R., Yun, Y., & Lu, H. (2017). Deep-learning-based drug–target interaction prediction. Journal of proteome research, 16(4), 1401-1409.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Journal of Computer Science and Artificial Intelligence

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.